Multi-scale analysis of polysilicon MEMS sensors subject to accidental drops: Effect of packaging
نویسندگان
چکیده
The effect of packaging on the impact-carrying capacity of micro electro-mechanical systems (MEMS) is investigated, with specific reference to a translational accelerometer. By exploiting the small ratio between the masses of MEMS and package/die (typically 10 3 or less) a decoupled two-scale, finite element approach is adopted: at the package/die length-scale the dynamics of whole device after the impact against a flat target surface is studied; at the sensor length-scale the response of the MEMS to the dropinduced loading is investigated, and MEMS details where the stress state can exceed the tensile strength of polysilicon are identified. Two drop orientations are considered, here termed bottom and top; in the first case, package and die strike the target with their bottom surfaces; in the second case, they fall upside-down, and strike the target with their top surfaces. By comparing the simulation outcomes in terms of maximum attained tensile stress, it results that package does not always lead to benefits in term of capability of the studied sensor to sustain drops. In the bottom drop configuration, e.g. MEMS failure may be triggered by the package. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-scale Analysis of MEMS Sensors Subject to Drop Impacts
The effect of accidental drops on MEMS sensors are examined within the frame-work of a multi-scale finite element approach. With specific reference to a polysilicon MEMSaccelerometer supported by a naked die, the analysis is decoupled into macro-scale (at dielength-scale) and meso-scale (at MEMS length-scale) simulations, accounting for the verysmall inertial contribution of the sensor to the o...
متن کاملA three-scale FE approach to reliability analysis of MEMS sensors subject to impacts
In this paper the effects of accidental impacts on polysilicon MEMS sensors are investigated within the framework of a three-scale finite element approach. By allowing for the very small ratio (on the order of 10−4) between the inertia of the MEMS and the inertia of the whole device, macro-scale analyses at the package length-scale are run to obtain the loadF. Fachin is currently with: Technolo...
متن کاملTwo-Scale Simulation of Drop-Induced Failure of Polysilicon MEMS Sensors
In this paper, an industrially-oriented two-scale approach is provided to model the drop-induced brittle failure of polysilicon MEMS sensors. The two length-scales here investigated are the package (macroscopic) and the sensor (mesoscopic) ones. Issues related to the polysilicon morphology at the micro-scale are disregarded; an upscaled homogenized constitutive law, able to describe the brittle...
متن کاملModeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the se...
متن کاملPhysically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 49 شماره
صفحات -
تاریخ انتشار 2009